Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37376248

RESUMO

Reinforced concrete structures in the marine environment face serious corrosion risks. Coating protection and adding corrosion inhibitors are the most economical and effective methods. In this study, a nano-composite anti-corrosion filler with a mass ratio of CeO2:GO = 4:1 was prepared by hydrothermally growing cerium oxide on the surface of graphene oxide. The filler was mixed with pure epoxy resin at a mass fraction of 0.5% to prepare a nano-composite epoxy coating. The basic properties of the prepared coating were evaluated from the aspects of surface hardness, adhesion grade, and anti-corrosion performance on Q235 low carbon steel subjected to simulated seawater and simulated concrete pore solutions. Results showed that after 90 days of service, the corrosion current density of the nanocomposite coating mixed with corrosion inhibitor was the lowest (Icorr = 1.001 × 10-9 A/cm2), and the protection efficiency was up to 99.92%. This study provides a theoretical foundation for solving the corrosion problem of Q235 low carbon steel in the marine environment.

2.
Polymers (Basel) ; 14(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36236028

RESUMO

Surface treatment technology is an effective method to reinforce the durability of concrete. In this study, cement-based materials containing industrial solid wastes were modified by hybrid nano-silica (HN), then applied as a novel surface protection material (SPM-HN). The effect of SPM-HN on surface hardness of mortar matrix exposed to seawater was investigated. Further, the microstructure was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and mercury intrusion porosimetry (MIP). The results show SPM-HN could significantly enhance the surface hardness of matrix in seawater curing, and the rebound number is increased by 94%.The microstructure analysis demonstrates that the incorporation of HN inhibits the formation of ettringite, thaumasite, and Friedel's salt. In addition, thermodynamic modeling shows the incorporation of hybrid nano-silica could generate more C-S-H, and decrease the maximum volume of Friedel's salt when SPM is exposed to seawater. This research indicates SPM-HN can be applied as a concrete protective layer in the marine environment.

3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(5): 1536-1540, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36208262

RESUMO

OBJECTIVE: To investigate the relationship between the type of FⅧgene mutation and the development of FⅧ inhibitors in patients with severe haemophilia A (HA). METHODS: The medical records of 172 patients with severe hemophilia A from January 2009 to September 2020 were reviewed. The types of FⅧgene mutations and the production of factor Ⅷ inhibitors were collected and divided into high-risk mutation group ( intron 1 inversions, large deletions, nonsense mutations), low-risk mutation group (missense mutations, small deletions and insertions, splice site mutations) and intron 22 inversions group. The correlation of FⅧgenotype and the production of FⅧ inhibitors in patients with HA were analyzed. RESULTS: Among 172 patients with severe HA, 21 cases(12.21%) developed FⅧ inhibitors. The cumulative incidence of FⅧ inhibitor development was 32%(10/31) in high risk group (75% patients with large deletions, 43% patients with intron 1 inversions, 20% patients with nonsense mutations) and 5%(2/43) in low risk group(6% patients with missense mutations, 5% patients with small deletions or insertions and 0% patient with a splice site mutation) and 9%(9/98) in intron 22 inversions group. Compared with the risk of FⅧ inhibitor development in intron 22 inversions group, the risk of FⅧ inhibitor development in high risk group was higher (OR=4.7, 95% CI: 1.7-13.0), the risk of FⅧ inhibitor development in low risk group was equal (OR=0.5, 95% CI: 0.1-2.3). Compared with the risk of inhibitor development in low risk group, the risk of FⅧ inhibitor development in high risk group was higher (OR=9.8, 95% CI: 2.0-48.7). CONCLUSION: Gene mutations of patients with severe HA in high-risk group which include intron 1 inversions, large deletions, nonsense mutations are a risk factor for FⅧ inhibitor production.


Assuntos
Fator VIII/genética , Hemofilia A , Códon sem Sentido , Análise Mutacional de DNA , Hemofilia A/genética , Humanos , Íntrons , Mutação
4.
Polymers (Basel) ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080648

RESUMO

The lamellar structure of graphene oxide and the filling effect of nano-cerium oxide particles together provide a good barrier and stability to coating. In this paper, cerium oxide-graphene oxide (4:1) nanocomposite was prepared by the hydrothermal synthesis method. The effect of cerium oxide-graphene oxide (4:1) nanocomposite on the anticorrosion properties of epoxy coating in simulated acid rain solution was studied by open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), Mott-Schottky curve, Tafel curve, and micromorphological characterization, in order to compare it with pure epoxy coating, graphene oxide epoxy coating, and cerium oxide epoxy coating. The obtained results showed that cerium oxide-graphene oxide (4:1) epoxy coating's protection efficiency was as high as 98.62%. These results indicated that cerium oxide-graphene oxide modified anticorrosive coating had an excellent application prospect in an acid rain environment. Meanwhile, owing to the poor protection ability of epoxy resin and unstably hydrolysis product of CeO2 to the acidic medium, the resistance of CeO2-GO (4:1)/EP coating to acidic corrosive medium was relatively poorer than that of neutral and saline-alkali corrosive medium.

5.
J Hazard Mater ; 437: 129375, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35724616

RESUMO

Shallow lakes and ponds, providing essential ecological and environmental services, are simultaneously disrupted by various pollutants of emerging concern (PECs). As a group of PECs, microplastics (MPs) ubiquitously found in freshwater are toxic to a huge variety of organisms. However, the consequence of secondary factors such as food quantity determining MPs toxicity, and the corresponding water safety risks await assessment is still poorly understood. Accordingly, we investigated how MPs across three particle sizes (10, 1 and 0.07 µm) interacted with food abundance to affect survival, reproduction and population performance in the waterflea Daphnia magna. Across multiple population traits, we found that MPs toxicity on Daphnia population performance was attenuated by higher food quantity, but this attenuation size was strongly dependent on MPs size. Path analysis results showed population growth rate was mainly constrained by reduced survival rather than fecundity. Furthermore, the additive null model revealed that the interactive effects of food abundance and MPs were predominately recognized as synergism and trait dependency. The present findings underscore the importance of considering the complexity of interactions that can occur in the wild, when assessing the effects of plastics pollution on population dynamics of the basic trophic level in lakes and ponds.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Daphnia , Lagos , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/análise
6.
Ecotoxicol Environ Saf ; 236: 113475, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364508

RESUMO

Most aquatic ecosystems are at risk of being polluted by new environmental pollutant nanoparticles. As the main food source of zooplankton, the biomass of algae always fluctuates. Cladocerans, an important part of zooplankton, are usually be simultaneously exposed to different abundance of algae and nanoparticles in aquatic environment. To evaluate the combined effects of food abundance and ZnO nanoparticles concentration on the development and early reproductive performance of cladocerans, we exposed Daphnia magna, a common and representative model organism in cladocerans, to the combinations of different abundances of Chlorella pyrenoidosa and different concentrations of ZnO nanoparticles, recorded the key life-history traits, and used multiple models to fit the data. Results showed that high level of ZnO nanoparticles and low abundance Chlorella had an interactively negative effect on the life history of D. magna. When D. magna was exposed to ZnO nanoparticles, some life history traits, such as survival time, body length at maturation, and offspring per female, increased exponentially with the increase of food abundance, and then reached a theoretical maximum value, whereas some other life history traits, such as time to maturation and time to first brood, showed an opposite trend. However, higher Chlorella abundance reduced the negative effect of ZnO nanoparticles on D. magna, but the negative effect could not be eliminated with the increase of food abundance. Below Chlorella 0.30 mg C L-1, food plays a decisive role, while at or above this threshold, ZnO nanoparticles play a decisive role. Therefore, the effect of different ZnO nanoparticles concentrations can be fully reflected only when food is sufficient, and the negative effects of food shortages may mask the toxic effects of ZnO nanoparticles on D. magna. The findings indicated that the effects of food abundance should be considered in evaluating the realistic impact of pollutants on zooplankton.


Assuntos
Chlorella , Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Animais , Daphnia , Ecossistema , Feminino , Nanopartículas/toxicidade , Reprodução , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade , Zooplâncton
7.
Polymers (Basel) ; 14(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406285

RESUMO

In the marine service environment, metal materials have a serious risk of corrosion. The corrosion rate of metal materials will be accelerated by the dual action of temperature change and alkali salt in saline-alkali environment. In order to delay the metal materials' corrosion rate and prolong their service life, this paper used a CeO2-GO (4:1) nanocomposite prepared by the hydrothermal synthesis method to make an anticorrosion coating. The anticorrosion performance was evaluated by stereo microscope and 3D images of the corrosion site were fitted for calculation. The state evolution of the CeO2-GO (4:1)/EP coating immerged in a simulated saline-alkali solution was studied by open circuit potential (OCP), electrochemical alternating current impedance spectroscopy (EIS), Mott-Schottky curve and Tafel curve. The results indicated that CeO2-GO (4:1) nanocomposites exhibited good resistance compared with graphene oxide and nano cerium oxide in a simulated saline-alkali environment. The research in this paper lays a firm theoretical foundation for the application of nano cerium-oxide-modified graphene oxide anticorrosive coating in saline-alkali environment engineering.

8.
Environ Pollut ; 296: 118770, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974088

RESUMO

The salinization of the global freshwater system caused by various human activities and climate change has become a common problem threatening freshwater biodiversity and resources, which may affect a variety of species of cladocerans at individual and population levels. In order to comprehensively evaluate the impact of salinization on different-sized cladocerans at individual and population levels, we exposed two species of cladocerans with obvious body size difference, Daphnia magna and Moina macrocopa, to seven salinities (0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12 M), recorded individual life history traits and population growth dynamics, and used multiple mechanistic models to fit the data. At the individual level, the median effect concentration of survival time, total offspring per female, and number of broods of D. magna were significantly higher than those of M. macrocopa. At the population level, the decrease in carrying capacity of D. magna with increasing salinity was significantly less than that of M. macrocopa. At the same salinity treatment, the integrated biomarker response indexes value of M. macrocopa is higher than that of D. magna. Therefore, it was further inferred that the sensitivity of small-sized species M. macrocopa to salinity stress is significantly higher than that of big-sized species D. magna. Thus, freshwater salinization may result in the replacement of smaller salt-intolerant cladocerans with larger salt-tolerant cladocerans, which may have dramatic effects on freshwater communities and ecosystems. Additionally, the increase of salinity had a greater impact on the population level of D. magna and M. macrocopa than on the individual level, indicating that population level of cladocerans was more susceptible to salinity stress. Experiments only based on individuals may underestimate the ecologically related changes in populations and communities, thus understanding the impact of salinization on freshwater systems needs to consider multiple ecological levels.


Assuntos
Cladocera , Poluentes Químicos da Água , Animais , Daphnia , Ecossistema , Feminino , Água Doce , Humanos , Dinâmica Populacional , Poluentes Químicos da Água/toxicidade
9.
J Hazard Mater ; 427: 127913, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34865906

RESUMO

Microplastics are an emerging and increasingly serious pollutant in freshwater environment, which have become a threat to freshwater organisms. However, whether microplastics interfere with the responses of organisms to their predators is still unclear. In this study, we investigated the effects of microplastics with tiny different particle size (diameter: 0.7 and 1 µm) on the anti-predation (Rhodeus ocellatus as the predator) defense responses of different body-sized cladocerans, Daphnia pulex and Moina macrocopa. Results showed that microplastics had a size-based inhibitory effect on the induced defense of both D. pulex and M. macrocopa. Specifically, 0.7 µm microplastics had stronger effects on reduced survival time, delayed maturation time, and decreased offspring numbers. In addition, the effects of microplastics also varied with different body-sized cladocerans, i.e. medium-sized cladoceran (D. pulex) were more sensitive than the small-sized one (M. macrocopa) regarding the maturation time. This study illustrated for the first time that the effect of microplastics on induced defense was related to cladoceran species and microplastics size, and further revealed the extensive negative effects of microplastics from the perspective of interspecific relationship.


Assuntos
Cladocera , Microplásticos , Animais , Daphnia , Plásticos/toxicidade , Comportamento Predatório
10.
Sci Total Environ ; 808: 152093, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34863741

RESUMO

Microbes perform a variety of vital functions that are essential for healthy ecosystems, ranging from nutrient recycling, antibiotic production and waste decomposition. In many animals, microbes become an integral part by establishing diverse communities collectively termed as "microbiome/s". Microbiomes defend their hosts against pathogens and provide essential nutrients necessary for their growth and reproduction. The microbiome is a polygenic trait that is dependent on host genotype and environmental variables. However, the alteration of microbiomes by stressful condition and their recovery is still poorly understood. Despite rapid growth in host-associated microbiome studies, very little is known about how they can shape ecological processes. Here, we review current knowledge on the microbiome of Daphnia, its role in fitness, alteration by different stressors, and the ecological and evolutionary aspects of host microbiome interactions. We further discuss how variation in Daphnia physiology, life history traits, and microbiome interactive responses to biotic and abiotic factors could impact patterns of microbial diversity in the total environment, which drives ecosystem function in many freshwater environments. Our literature review provides evidence that microbiome is essential for Daphnia growth, reproduction and tolerance against stressors. Though the core and flexible microbiome of Daphnia is still debatable, it is clear that the Daphnia microbiome is highly dependent on interactions among host genotype, diet and the environment. Different environmental factors alter the microbiome composition and diversity of Daphnia and reduce their fitness. These interactions could have important implications in shaping microbial patterns and their recycling as Daphnia are keystone species in freshwater ecosystem. This review provides a framework for studying these complex relationships to gain a better understanding of the ecological and evolutionary roles of the microbiome.


Assuntos
Características de História de Vida , Microbiota , Animais , Daphnia , Água Doce , Genótipo
11.
Polymers (Basel) ; 13(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202424

RESUMO

Graphene is a two-dimensional sheet of regular hexagonal honeycomb lattice formed by sp2 hybrid orbital bonding, with only one layer thickness of a single atom, which is known as the "super king" of the 21st century. Previous studies have shown that cerium oxide-graphene oxide (CeO2-GO(4:1)) nanocomposites eliminated the agglomeration of graphene to some extent and the CeO2-GO(4:1) epoxy coating could be prepared with good anti-corrosion performance. In this paper, CeO2-GO(4:1) nanocomposites were prepared by the hydrothermal synthesis method, and the three-electrode method was used for electrochemical tests. The state evolution of CeO2-GO(4:1)/EP coating and the synergy between CeO2-GO(4:1)/EP and corrosion inhibitor in simulated seawater solution with different concentrations (20%, 40%, 60%) were analyzed and illustrated by Optical Microscope (OM) characterization, Open Circuit Potential (OCP), Electrochemical alternating current Impedance Spectroscopy (EIS), Mott-Schottky curve and Tafel curve. The results indicated that CeO2-GO(4:1) nanocomposites showed good corrosion resistance in a marine environment. This research lays a solid theoretical foundation for the application of cerium oxide-modified graphene oxide anticorrosive coating in marine engineering.

12.
J Environ Manage ; 297: 113281, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274765

RESUMO

Eutrophication of natural water bodies worldwide has led to cyanobacteria becoming the dominant species in phytoplankton communities, causing serious harm environmentally and economically. Cyanobacterial succession makes effective treatment of cyanobacterial blooms a challenge. Although there are many studies about cyanobacterial dominance and succession, it is still lack of relevant review summarizing the advances on this topic. To control cyanobacterial blooms and manage water quality effectively, we conducted a critical review and drew the following conclusions: (1) cyanobacterial dominance and succession occur from spring to summer, with changes of multiple environmental factors dominated by temperature and nutrients conditions; (2) the cyanobacterial dominance and succession are inherently attributed to the distinctive traits of cyanobacteria including colony formation, gas vesicles, toxin release, and nitrogen fixation; (3) given the current meta-omics explorations on mechanisms of cyanobacterial succession, how to combine the extensive data to draw general conclusions is a challenge in the future; (4) the dominant niche of high temperature-adapted cyanobacteria genera will be further reinforced with global warming and elevated carbon dioxide in the future; (5) considering the causes and future developments of cyanobacterial blooms, the management strategies for controlling cyanobacterial blooms include reducing external nutrient input and removing internal nutrient in sediment, artificial mixing waters to decrease buoyancy of cyanobacteria, and biological control using allelopathy of aquatic plants and/or enhancing zooplankton feeding.


Assuntos
Cianobactérias , Animais , Eutrofização , Aquecimento Global , Lagos , Fitoplâncton , Zooplâncton
13.
Sci Total Environ ; 783: 147154, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088136

RESUMO

The water bodies are greatly influenced by chemical contamination and global increasing temperature. As an emerging pollutant, microplastics are widely distributed in the freshwater environment, raising concerns regarding their potential toxicity to organisms. Especially for zooplankton filter feeders, many of microplastics are in similar size as their food. Individually, both microplastics and temperature have profound effects on zooplankton populations and their function in ecosystems. However, the strength and direction of their interactive effects are still not clear. Here, we performed a comprehensive biotoxicity assessment providing empirical evidence that the temperature played a key role in shaping the sensitivity of the zooplankter, Daphnia magna, against microplastic toxicity. We found that exposure to microplastics generally caused negative effects on Daphnia individual fitness, such as increased lethality, declined fecundity and reduced population growth rate. This microplastic toxicity was more prominent at 30 °C than at 20 °C, and was rather minor at 15 °C. Moreover, the warming accelerated the ingestion of microplastics, and triggered abnormal ultrastructure of intestinal epithelial cells. In addition, the expression profiling of candidate genes revealed oxidative damage, fecundity impairment and energy retardation by microplastics were amplified with increasing temperature, which may contribute to the enhancement of microplastic toxicity under warming. Given that high temperature fluctuations are becoming more common and difficult to predict, the interactive effects of microplastics and climate warming on Daphnia population dynamics and biomass production may become increasingly aggravated in nature. Collectively, extrapolation for environmental risk assessment studies conducted under different temperature contexts may broaden our knowledge microplastic toxicity on aquatic organism fitness.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Daphnia , Ecossistema , Expressão Gênica , Aptidão Genética , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Environ Pollut ; 271: 116409, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33418289

RESUMO

The gut microbiota has been increasingly recognized to regulate host fitness, which in turn is dependent on stability of community structure and composition. Many biotic and abiotic factors have been demonstrated to shape gut microbiota of cladocerans. However, the interactive effects of these variables on cladocerans fitness due to alteration of gut microbiota and their linkage with life history parameters are poorly understood. Here, we investigated the responses of Daphnia magna gut microbiota to the combined effects of toxic Microcystis aeruginosa and high temperature and its associations with fitness. We found that under good food regime, the temperature has no effect on the composition of the gut microbiota, whereas under high proportion of toxic M. aeruginosa and high temperature conditions, D. magna lost their symbionts. High proportion of toxic M. aeruginosa and high temperature had synergistically negative effects on D. magna performance due to altered gut microbiota. The high abundance of symbiotic Comamonadaceae and good food increased D. magna fitness. The present study illustrates that understanding life history strategies in response to multiple stressors related to changes in the gut microbiota diversity and composition requires integrated approaches that incorporate multiple linked traits and tether them to one another.


Assuntos
Microbioma Gastrointestinal , Características de História de Vida , Microcystis , Animais , Daphnia , Temperatura
15.
Polymers (Basel) ; 13(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419213

RESUMO

Due to its special two-dimensional lamellar structure, graphene possesses an excellent shielding effect, hydrophobic characteristics and large specific surface area, which can effectively isolate the internal structure from the external corrosive media. However, lamellar graphene is easy to stack and agglomerate, which limits its anti-corrosion performance. In this paper, cerium oxide-graphene oxide (CeO2-GO) nanocomposites were prepared by a hydrothermal synthesis method. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) were applied for microstructure examination, showing that a large number of nanoscale granular cerium oxide grew on the lamellar graphene oxide surface, which improved the dispersion performance of graphene inside the matrix. The anti-corrosion properties of the coating were analyzed and illustrated by open circuit potential (OCP), frequency response analysis, Tafel curve and Mott-Schottky curve. The results indicated that the CeO2-GO (4:1) nanocomposite not only eliminated the agglomeration of graphene to some extent, but also prepared the graphene epoxy coating with good dispersion, which further promoted its anti-corrosion performance. The paper proposed a feasible solution for GO dispersion in cement-based materials and lays a solid theoretical foundation for the engineering application of cerium oxide-graphene oxide modified anticorrosive coating.

16.
J Am Chem Soc ; 142(41): 17384-17392, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32997941

RESUMO

Efficient electro-reduction of CO2 over metal-organic framework (MOF) materials is hindered by the poor contact between thermally synthesized MOF particles and the electrode surface, which leads to low Faradaic efficiency for a given product and poor electrochemical stability of the catalyst. We report a MOF-based electrode prepared via electro-synthesis of MFM-300(In) on an indium foil, and its activity for the electrochemical reduction of CO2 is assessed. The resultant MFM-300(In)-e/In electrode shows a 1 order of magnitude improvement in conductivity compared with that for MFM-300(In)/carbon-paper electrodes. MFM-300(In)-e/In exhibits a current density of 46.1 mA cm-2 at an applied potential of -2.15 V vs Ag/Ag+ for the electro-reduction of CO2 in organic electrolyte, achieving an exceptional Faradaic efficiency of 99.1% for the formation of formic acid. The facile preparation of the MFM-300(In)-e/In electrode, coupled with its excellent electrochemical stability, provides a new pathway to develop efficient electro-catalysts for CO2 reduction.

17.
Environ Pollut ; 266(Pt 3): 115092, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32650302

RESUMO

Antidepressants discharged into natural waters are likely to become a new type of endocrine pollutant, which may impact the interspecific relationship in aquatic ecosystem. Induced defense of cladocerans plays an important role in maintaining the balance of interspecific relationships between cladocerans and higher trophic levels. Here we studied the effects of antidepressant sertraline, a selective serotonin reuptake inhibitor, on the induced defensive traits of Ceriodaphnia cornuta in response to invertebrate predator Chaoborus larvae kairomone, including morphological defense and life history traits. We also conducted the predation experiments to check the selection rate of Chaoborus larvae during directly ingesting C. cornuta that were exposed to Chaoborus larvae kairomone at high concentration of sertraline. Results showed sertraline had an interference effect on the induced morphological defense of C. cornuta in response to Chaoborus larvae kairomone, i.e. the high concentration of sertraline (20 and 100 µg L-1) significantly reduced the horns induction. However, the different concentrations of sertraline generally did not affect the life history traits of C. cornuta, regardless of presence or absence of Chaoborus larvae kairomone. The predation experiment demonstrated that the inhibition of sertraline on the induced morphological defense of C. cornuta can promote the feeding selective efficiency of Chaoborus larvae, and thus cause C. cornuta easily to be predated by Chaoborus larvae. Our results suggested that sertraline at the concentrations that are not direct harmful to life history traits of C. cornuta can seriously affect the predator-prey relationship, indicating that effects of pollutants on interspecific relationships should be considered comprehensively to avoid underestimating the potential risk of pollutants to ecosystems.


Assuntos
Ecossistema , Sertralina , Animais , Antidepressivos , Daphnia , Larva , Feromônios
18.
Chemosphere ; 260: 127594, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32673874

RESUMO

Salinization of freshwater ecosystems caused by human activities and climate change is a global problem that threatens freshwater resources and aquatic organisms. The aggravation of salinization and the presence of cyanobacterial blooms may pose a serious threat to crustacean zooplankton Daphnia. To test the consequences of these effects, we exposed Daphnia magna to the combined treatments of different chloride concentrations and three food compositions (100% Chlorella pyrenoidosa, 90% C. pyrenoidosa + 10% toxic Microcystis aeruginosa, 80% C. pyrenoidosa + 20% toxic M. aeruginosa) for 21 days, recorded relevant life history indicators, and fitted them using Sigmoidal and Gaussian model if appropriate. Results showed that both increased chloride and the presence of toxic M. aeruginosa in the food had significantly negative effects on key life history traits and clearance rate, and the two factors also had a significant interaction on the survival, development, and reproduction of D. magna. The maximum values of the key life-history traits and clearance rate, the median effect chloride concentrations, and the optimal chloride concentrations derived from the models showed that the survival, reproduction, and clearance rate of D. magna were threatened by high chloride concentrations, which were exacerbated by the presence of toxic M. aeruginosa, but lower concentration of chloride was beneficial to D. magna to resist toxic M. aeruginosa. In conclusion, the combined effects of increasing chloride concentration and cyanobacterial blooms have severely adverse impacts on cladocerans, which may cause cladocera population to decline more rapidly and potentially disrupt the food webs of aquatic ecosystems.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Água Doce/química , Microcystis/crescimento & desenvolvimento , Cloreto de Sódio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Chlorella/crescimento & desenvolvimento , Daphnia/crescimento & desenvolvimento , Daphnia/fisiologia , Ecossistema , Cadeia Alimentar , Humanos , Características de História de Vida , Reprodução/efeitos dos fármacos
19.
Chemosphere ; 248: 126101, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32045977

RESUMO

Calcium decline and cyanobacterial blooms pose a serious threat to the crustacean zooplankton Daphnia, which has a high demand for calcium. In the present study, we exposed two different clones of Daphnia pulex to different combinations of calcium concentrations (0.1, 0.5, 1.0, 5.0, 10.0 mg L-1) and food types (100% Chlorella; 80% Chlorella and 20% non-toxic Microcystis; 80% Chlorella and 20% toxic Microcystis) for 16 days, recorded the key life-history traits, and then used an exponential rise function to fit the traits. Results showed toxic Microcystis and low calcium together negatively affected the survival, development, and reproduction of Daphnia. The negative effect of non-toxic Microcystis and low calcium only affected the development and reproduction. The survival time and reproductive performance increased exponentially with increasing calcium concentration and then approached an asymptotic maximum. Both non-toxic and toxic Microcystis reduced the asymptotic maximum of the reproductive performance. The rising rate at which they reached the asymptotes differed significantly among the three food types; i.e., the reproductive performance of Daphnia was affected in a wider range of calcium concentrations under bad food quality. The findings indicated that Microcystis impaired the tolerance of Daphnia to low calcium, which may cause serious consequences in freshwater ecosystems.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Cálcio/metabolismo , Daphnia/efeitos dos fármacos , Características de História de Vida , Toxinas Marinhas/toxicidade , Microcystis/metabolismo , Zooplâncton/efeitos dos fármacos , Animais , Cálcio/farmacologia , Chlorella/metabolismo , Relação Dose-Resposta a Droga , Ecossistema , Água Doce/química , Toxinas Marinhas/metabolismo , Microcystis/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos
20.
Sci Total Environ ; 705: 135827, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31972953

RESUMO

The gut microbiota has a crucial role in host physiology and fitness. Host-microbiota relationships can be disrupted by environmental stressors, which further affect host growth and survival. However, the link between host performance and the gut microbiota composition shaped by increasing antibiotic pollution under different food conditions is not clearly understood. In the present study, we used Daphnia magna as a model organism to investigate the interactive effects of diets (Chlorella with or without Microcystis) and antibiotics on its life history traits, gut microbiota alterations, and their relationship. The results showed that poor diet consumption by D. magna at low and high antibiotic concentrations reduced reproduction and survival. Under good diet conditions, the fitness was reduced only at a high antibiotic concentration. Under good diet conditions, high concentration of antibiotics reduced the abundance of Comamonadaceae and increased the abundance of Pseudomonadaceae, whereas under poor diet conditions, both low and high concentrations of antibiotics increased the abundance of Pseudomonadaceae. Performances of life history traits were positively correlated with an increased abundance of Comamonadaceae but were negatively correlated with increased Pseudomonadaceae abundance. The results of this study revealed the interactive effects of diet and antibiotics on D. magna fitness and correlations between bacterial abundance and life history traits, which has important implications for understanding the effects of pollutants on host-microbiota interactions through changes in phenotypes.


Assuntos
Microbioma Gastrointestinal , Características de História de Vida , Animais , Antibacterianos , Chlorella , Daphnia , Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...